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Issue: LLMs are sensitive to variations in instructions
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LLaMA-2-7B

Sclar, M., Choi, Y., Tsvetkov, Y., & Suhr, A. Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting. ICLR 2024



  Contrastive Instruction Tuning

Issue: LLMs are sensitive to variations in instructions
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ChatGPT gives inconsistent answers when facing variations in instructions. 

Zhu, K., Wang, J., Zhou, J., Wang, Z., Chen, H., Wang, Y., ... & Xie, X. (2023). Promptbench: Towards evaluating the robustness of large language models on adversarial prompts. arXiv preprint arXiv:2306.04528.
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Our solution: Contrastive Instruction Tuning
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Idea: Encourage semantically equivalent inputs to stay close to each other while 
dissimilar ones to be far apart in LLMs’ hidden representation space
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Last token’s hidden state 
from the last layer
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Idea: Encourage semantically equivalent inputs to stay close to each other while 
dissimilar ones to be far apart in LLMs’ hidden representation space

Data w/ instructions of different tasks (Far OODs) are 
already distinguishable (Liu, Bo, et al. COLING 2024)

Liu, B., Zhan, L., Lu, Z., Feng, Y., Xue, L., & Wu, X. M. How Good Are Large Language Models at Out-of-Distribution Detection?. COLING 2024
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Our solution: Contrastive Instruction Tuning
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Idea: Encourage semantically equivalent inputs to stay close to each other while 
dissimilar ones to be far apart in LLMs’ hidden representation space

Far OODs

Near OODs 
(Same task, 
different class)
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Experiment Setup: Training
● Data: 

○ Datasets from the FLAN collection (52k instruction-instance pairs)

○ For every pair from a dataset 

■ Positive sample: randomly select a predefined instruction template as paraphrases

(Avoid making assumptions about specific types of variations in instructions)

■ Negative sample: randomly select another pair from the remaining dataset

● Model: Alpaca LoRA

(Refer to paper for more experiment details)
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Experiment Setup: Evaluation
● Sample 300 instruction-instance pairs from each of the 10 GLUE tasks

● Select six clean instructions predefined for each task & add perturbations at four 
levels following PromptBench
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Zhu, K., Wang, J., Zhou, J., Wang, Z., Chen, H., Wang, Y., ... & Xie, X. (2023). Promptbench: Towards evaluating the robustness of large language models on adversarial prompts. arXiv preprint arXiv:2306.04528.
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Experiment Setup: Evaluation
● Sample 300 instruction-instance pairs from each of the 10 GLUE tasks

● Select six clean instructions predefined for each task & add perturbations at four 
levels following PromptBench

Clean: Review the sentence below and identify whether its grammar is 'Acceptable' or 'Unacceptable':

Character: Reiew the seVntence below and identifpy wheoher its gVammar is 'Acceptable' or 'Unacceptable':

Word: Analyzed the assertion below and ascertain whether its grammar is 'Acceptable' or 'Unacceptable':

Sentence: Review the sentence below and identify whether its grammar is 'Acceptable' or 'Unacceptable' LGOZMPXsPd:

Semantic: Evaluate the sentence below and determine if its grammar is 'Acceptable' or 'Unacceptable':

* All instructions are unseen during training
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* All instructions are unseen during training

● Metric: Average accuracy (exact match) and standard deviation
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Zhu, K., Wang, J., Zhou, J., Wang, Z., Chen, H., Wang, Y., ... & Xie, X. (2023). Promptbench: Towards evaluating the robustness of large language models on adversarial prompts. arXiv preprint arXiv:2306.04528.
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● 🤗 Consistent improvement in accuracy & decrease in standard deviation 

      w/o introducing any new data & training steps

● 🤗 Able to generalize from paraphrases to all types of variations in instructions

Main Results
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Fine-tuned on the same data as CoIN w/o contrastive loss
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Analyses: Closer Representations of Instruction Variations

● 🤕 Continual instruction tuning: 
Instructions with different variations are clustered into distinct groups → Higher sensitivity

● 🤗 CoIN: 
Larger overlap between clean & perturbed instructions →More robust to instruction variations
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UMAP (McInnes et al., 2020) visualization of the hidden representations of decoder’s last output token (300 datapoints from CoLA dataset)
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Analyses: Impact on Different Tasks

● More evident improvement in paraphrase identification and grammar correctness

● Directly benefit from model’s more refined ability to group textual inputs with 

similar semantic meanings
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Conclusions
● We propose Contrastive Instruction Tuning (CoIN) that aligns hidden 

representations of semantically equivalent instruction-instance pairs

● Evaluation results on PromptBench w/ instruction variations at character, word, 

sentence, and semantic level demonstrate CoIN’s effectiveness of enhancing 

LLMs’ robustness to instruction variations

● CoIN can be applied to enhance models’ robustness on other prompt component 

(e.g. system prompts, few-shot demonstration) and other modalities
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Special thanks to all my amazing collaborators!
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